LogoLogo
  • Welcome!
  • Mission Statement
  • Contributing Guidelines
    • Embed CADs in Wiki Articles
  • VEX Worlds Livestream Archive
    • VEX U
    • V5RC High School
    • V5RC Middle School
    • VIQRC Middle School
    • VIQRC Elementary School
    • JROTC
  • ⚙️Hardware
    • Design Fundamentals
      • Gear Ratios
      • Internal Forces (Stress)
      • Torque
      • RPM
      • Center of Mass
    • Introduction to VEX Parts
      • Structure
        • C-Channels and Angles
        • Fasteners
        • Retainers
        • Gussets and Brackets
        • Bearings
        • Plate Metal and Flat Bars
      • Motion
        • High Strength Components
        • Gears and Sprockets
        • Traction Wheels
        • Mecanum Wheels
        • Omnidirectional Wheels
        • Flex Wheels
    • Robot Decorations
      • Part Dyeing
      • Metal Coloring
      • License Plate Holders
    • Lifts
      • Double Reverse Four Bar (DR4B or RD4B)
      • Four Bar
      • Scissor Lift
      • Six Bar
      • Other Lifts
      • Best Practices
    • Shooting Mechanisms
      • Catapult
      • Flywheel
      • Linear Puncher
    • Drivetrains
      • Tank Drive
      • Mecanum Drive
      • Holonomic Drive
      • Designing a Drivetrain
      • Best Practices
    • Pivots & Joints
    • Pneumatics
      • Best Practices - Pneumatics
    • Intakes
    • Flip Out Mechanisms
    • Defensive Mechanisms
    • Misc. Building Techniques
    • VexU
      • Common Manufacturing Techniques
        • 3D Printing
        • Laser Cutting
      • Custom Manufactured Parts Library
      • Commercial Off The Shelf Parts Library
  • 👑Team Administration
    • New Team Resources
      • Creating The Team
      • Gaining Interest for Robotics Teams
      • Attending Competitions
        • Elimination Bracket
    • Team Dynamics
      • Organization Structure and Longevity
      • Member Allocation and Management
      • How *Not* To Run a Team
    • Team Finances
      • One-Year Team Financial Breakdown
      • Funding Your Teams
    • Hosting Competitions
      • Live Streaming
      • Tournament Manager
        • Competition Electronics
        • Creating a Tournament
        • Tools
          • Field Set Control
          • Connecting Mobile Devices
          • Connecting Raspberry Pis
        • Match Control
          • Inputting Match Scores
          • Inputting Skills Scores
          • Inputting Scores on TM Mobile
        • Displays
        • Alliance Selection
      • Additional Event Partner Resources
    • VexU Organization Management
      • Getting Started in VexU
      • Team / Personnel Management
      • Volunteering At Local Events
  • 📚The Judging Process
    • The Engineering Design Process
      • Test and Refine
    • The Engineering Notebook
      • Segments of the Notebook
      • BLRS2 '23-'24 Engineering Notebook
      • Integrating Inventor Models into Documentation
      • Engineering Notebook Rubric Breakdown
    • The Interview
      • Interview Rubric Breakdown
    • Using Notion for an Engineering Notebook
      • How to Setup a Notebook
      • How to Create Entries
      • How to Export a Notebook
      • Purdue SIGBots Notion Template
        • Game Analysis
        • Identify The Problem
        • Brainstorm Solution
        • Select Best Approach & Plan
        • Build Log
        • Programming Log
        • Testing Solution
        • Tournament Recap
        • Innovative Feature
  • 🖥️VEX CAD
    • CAD Programs
      • Inventor
      • Fusion 360
      • Solidworks
      • OnShape
      • Protobot
    • Making a Chassis
      • Inventor Chassis: The Basics
        • Installation
        • User Interface Overview
        • Dark Mode
        • Assemblies
        • Placing Parts
        • Navigating CAD
        • Changing Visual Style
        • Grounding
        • Connecting Two C-Channels
        • Modifying Existing Constraints
        • Toggling Visibility on Existing Parts
        • Completing Half of the Chassis
          • Inner Drive Channel
          • Bearing Flats
          • Motors
          • Wheels
          • Sprockets
          • Spacers, Washers and Standoffs
          • Spacers Cont.
        • Creating Mid-Plane
        • Mirroring
      • Inventor Chassis: Best Practices
        • File Structure
        • Subassemblies
        • Wheel Subassembly
        • Origin Planes
        • Cross Brace
        • Drive Channels
        • Simple Motor iMates
        • Replacing Simple Electronics
        • Completing Half of the Drive
          • Bearing Flats (Best Practice)
          • Wheels
          • Powered Gear
          • Spacer Boxing
          • Spacers, Washers and Standoffs (Best Practice)
        • Model Browser Folders
        • Mirroring (Best Practice)
        • Model Browser Folder (Right)
        • Main Assembly
      • Fusion 360 Chassis
      • Solidworks Chassis, Chain, and Custom Plastic
    • Remembering The Best
      • 62A Skyrise
      • 400X Nothing But Net
      • 2587Z Nothing But Net
      • 365X Starstruck
      • 62A In The Zone
      • 202Z In The Zone
      • 5225A In The Zone
      • 169A Turning Point
      • 929U Turning Point
      • 7K Tower Takeover
      • 5225A Tower Takeover
      • 62A Change Up
    • Scuff Controller
  • 💻Software
    • Odometry
    • Path Planning
    • Robotics Basics
      • Arcade Drive
      • Tank Drive
      • Joystick Deadzones
      • Curvature (Cheesy) Drive
      • Subsystem Toggling
    • Organizing Code
      • Code Style
      • Code Styling Guide
      • Writing Good Comments
      • Version Control
    • Control Algorithms
      • Bang Bang
      • PID Controller
      • Basic Pure Pursuit
      • Flywheel Velocity Control
      • Kalman Filter
      • Take Back Half (TBH) Controller
      • RAMSETE Controller
    • Competition Specific
      • Operator Control
      • Autonomous Control
    • C++ Basics for VEX Robotics
      • Basic Control Flow
      • Enumerations
      • Namespaces (::)
      • Multiple Files (C/C++)
    • VEX Programming Software
      • PROS
        • OkapiLib
      • vexide
      • Robot Mesh Studio (RMS)
      • EasyC
      • RobotC
      • VEXcode
      • Midnight C
    • General
      • Stall Detection
      • Register Programming
      • Sensors and Odometry in Autonomous
      • Embedded Programming Tips
      • Debugging
      • Bit Shift
      • Bit Mask
      • Autoformatting
      • Finite State Machine
      • Data Logging
    • Object Recognition
      • Red Green Buoy
      • AMS
      • OpenCV
      • OpenNI
    • 🤖AI in VRC: Pac-Man Pete
  • ⚡VEX Electronics
    • V5 ESD Protection Board
    • VEX Electronics
      • VEX V5 Brain
        • V5 Electronics Observations and Issues
      • VEX Controller
      • VEXnet and V5 Robot Radio
      • VEX Battery
      • VEX Motors
    • VEX Sensors
      • 3-Pin / ADI Sensors
        • Encoder
        • Potentiometer
        • Limit Switch
        • Bumper Switch
        • Accelerometer
        • Gyroscope
        • Ultrasonic
        • Line Tracker
        • LED Indicator
      • Smart Port Sensors
        • GPS Sensor
        • Rotation Sensor
        • Vision Sensor
        • Optical Sensor
        • Distance Sensor
        • Inertial Sensor (IMU)
        • 3-Wire Expander
    • V5 Brain Wiring Guide
    • Legacy
      • VEX Cortex
      • Power Expander
      • VEX Motor Controller
      • VEX Cortex Wiring Guide
  • General Electronics
    • General Topics
      • External Boards
        • ASUS Tinker Board S
        • Arduino
        • Beagleboard
        • Leaflabs Maple
        • LattePanda
        • Meadow F7 Micro
        • Netduino
        • ODROID-XU4
        • Pandaboard
        • Raspberry Pi
      • Analog-Digital Converter (ADC)
      • Bit-Bang
      • GPIO
      • I2C
      • Jitter
      • Line Noise
      • List of Tools
      • Output Drive
      • Power Consumption
      • Radius Array
      • Resettable Fuse (PTC)
      • SPI
      • Slew Rate
      • Stalling
      • USART
      • UART
      • 5 Volt Tolerant
      • DC Motor Basics
Powered by GitBook
LogoLogo

This work is licensed under a Attribution-ShareAlike 2.0 Generic License

On this page
  • Features
  • Specifications
  • Vision Utility
  • Teams Contributed to this Article:

Was this helpful?

Edit on GitHub
Export as PDF
  1. VEX Electronics
  2. VEX Sensors
  3. Smart Port Sensors

Vision Sensor

The Vision Sensor tells you where colored objects are located.

PreviousRotation SensorNextOptical Sensor

Last updated 2 years ago

Was this helpful?

Features

At its most basic mode, the Vision Sensor tells you where a colored object is located. The location's X value represents the right and left position. When the camera is tilted down, the Y value represents the distance to the object, with some basic trigonometry necessary.

The Vision Sensor combines a dual ARM Cortex M4+M0 processor, color camera, WiFi, and USB into a single sensor. The sensor can be trained to locate objects by color. Every 200 milliseconds, the camera provides a list of the object found matching up to eight unique colors. The object’s height, width, and location is provided. Multi-colored objects can also be programmed, allowing color codes to provide new information to the robot. Color-codes can represent anything, including location, object type, street signs, movement instructions, robot identifiers, etc. The Vision Sensor has USB for a direct connection to your computer. The Vision Sensor also has WiFi Direct and acts like a web server. This allows you to wirelessly view “live” video from any computer equipped with a browser and WiFi.

Specifications

V5 Vision Sensor

Vision Framerate

50 Frames per second

Color Signatures

7 independent colors

Color Codes

2 3 or 4 color signatures per color code

Image Size

640 x 400 pixels

Microcontroller

Dual ARM Cortex M4 and M0

Connectivity

V5 Smart Port IQ Smart Port USB Micro

Wireless

2.4 GHz 802.11 Wi-Fi Direct hotspot with built in webserver

Compatibility

Any device with WiFi and a Browser

Weight

0.77lbs (350g)

Vision Utility

The Vision Utility is the primary tool used to calibrate the Vision Sensor such that it will be able to locate objects of a particular color. The user-calibrated color that the Vision Sensor tries to locate is known as a "signature". The Vision Sensor can store seven signatures total. To use the Vision Utility, the Vision Sensor must be plugged into a computer via a mini-USB cable. Then, after opening the Vision Utility, the sensor's camera should become active, and should relay the video feed to the Vision Utility window.

To generate a color signature, freeze the on-screen image. Then, hold down the left mouse button to create a rectangular area to cover. The area covered will represent the color signature. After releasing the left mouse button, the area will be set. From there, the "set" button can be pressed on the right of the window for any of the seven signatures. This will generate a signature in the given signature slot. These steps can be repeated to generate as many color signatures as possible.

Teams Contributed to this Article:

Pressing the blue copy button on the bottom right of the window will copy all of the signatures in syntax. This means that the signatures will be competition-ready as soon as it is pasted into VEXcode. In terms of , the VEXcode syntax copied from the Vision Utility will not function on its own, but the signatures can be properly generated using the "" method.

(Purdue SIGBots)

(B.E.S.T.I.E. Robotics)

⚡
BLRS
904U
VEXcode
PROS
signature_from_utility
The Vision Utility recognizing a red gear's color signature, creating a white rectangular overlay to show object recognition.