LogoLogo
  • Welcome!
  • Mission Statement
  • Contributing Guidelines
    • Embed CADs in Wiki Articles
  • VEX Worlds Livestream Archive
    • VEX U
    • V5RC High School
    • V5RC Middle School
    • VIQRC Middle School
    • VIQRC Elementary School
    • JROTC
  • ⚙️Hardware
    • Design Fundamentals
      • Gear Ratios
      • Internal Forces (Stress)
      • Torque
      • RPM
      • Center of Mass
    • Introduction to VEX Parts
      • Structure
        • C-Channels and Angles
        • Fasteners
        • Retainers
        • Gussets and Brackets
        • Bearings
        • Plate Metal and Flat Bars
      • Motion
        • High Strength Components
        • Gears and Sprockets
        • Traction Wheels
        • Mecanum Wheels
        • Omnidirectional Wheels
        • Flex Wheels
    • Robot Decorations
      • Part Dyeing
      • Metal Coloring
      • License Plate Holders
    • Lifts
      • Double Reverse Four Bar (DR4B or RD4B)
      • Four Bar
      • Scissor Lift
      • Six Bar
      • Other Lifts
      • Best Practices
    • Shooting Mechanisms
      • Catapult
      • Flywheel
      • Linear Puncher
    • Drivetrains
      • Tank Drive
      • Mecanum Drive
      • Holonomic Drive
      • Designing a Drivetrain
      • Best Practices
    • Pivots & Joints
    • Pneumatics
      • Best Practices - Pneumatics
    • Intakes
    • Flip Out Mechanisms
    • Defensive Mechanisms
    • Misc. Building Techniques
    • VexU
      • Common Manufacturing Techniques
        • 3D Printing
        • Laser Cutting
      • Custom Manufactured Parts Library
      • Commercial Off The Shelf Parts Library
  • 👑Team Administration
    • New Team Resources
      • Creating The Team
      • Gaining Interest for Robotics Teams
      • Attending Competitions
        • Elimination Bracket
    • Team Dynamics
      • Organization Structure and Longevity
      • Member Allocation and Management
      • How *Not* To Run a Team
    • Team Finances
      • One-Year Team Financial Breakdown
      • Funding Your Teams
    • Hosting Competitions
      • Live Streaming
      • Tournament Manager
        • Competition Electronics
        • Creating a Tournament
        • Tools
          • Field Set Control
          • Connecting Mobile Devices
          • Connecting Raspberry Pis
        • Match Control
          • Inputting Match Scores
          • Inputting Skills Scores
          • Inputting Scores on TM Mobile
        • Displays
        • Alliance Selection
      • Additional Event Partner Resources
    • VexU Organization Management
      • Getting Started in VexU
      • Team / Personnel Management
      • Volunteering At Local Events
  • 📚The Judging Process
    • The Engineering Design Process
      • Test and Refine
    • The Engineering Notebook
      • Segments of the Notebook
      • BLRS2 '23-'24 Engineering Notebook
      • Integrating Inventor Models into Documentation
      • Engineering Notebook Rubric Breakdown
    • The Interview
      • Interview Rubric Breakdown
    • Using Notion for an Engineering Notebook
      • How to Setup a Notebook
      • How to Create Entries
      • How to Export a Notebook
      • Purdue SIGBots Notion Template
        • Game Analysis
        • Identify The Problem
        • Brainstorm Solution
        • Select Best Approach & Plan
        • Build Log
        • Programming Log
        • Testing Solution
        • Tournament Recap
        • Innovative Feature
  • 🖥️VEX CAD
    • CAD Programs
      • Inventor
      • Fusion 360
      • Solidworks
      • OnShape
      • Protobot
    • Making a Chassis
      • Inventor Chassis: The Basics
        • Installation
        • User Interface Overview
        • Dark Mode
        • Assemblies
        • Placing Parts
        • Navigating CAD
        • Changing Visual Style
        • Grounding
        • Connecting Two C-Channels
        • Modifying Existing Constraints
        • Toggling Visibility on Existing Parts
        • Completing Half of the Chassis
          • Inner Drive Channel
          • Bearing Flats
          • Motors
          • Wheels
          • Sprockets
          • Spacers, Washers and Standoffs
          • Spacers Cont.
        • Creating Mid-Plane
        • Mirroring
      • Inventor Chassis: Best Practices
        • File Structure
        • Subassemblies
        • Wheel Subassembly
        • Origin Planes
        • Cross Brace
        • Drive Channels
        • Simple Motor iMates
        • Replacing Simple Electronics
        • Completing Half of the Drive
          • Bearing Flats (Best Practice)
          • Wheels
          • Powered Gear
          • Spacer Boxing
          • Spacers, Washers and Standoffs (Best Practice)
        • Model Browser Folders
        • Mirroring (Best Practice)
        • Model Browser Folder (Right)
        • Main Assembly
      • Fusion 360 Chassis
      • Solidworks Chassis, Chain, and Custom Plastic
    • Remembering The Best
      • 62A Skyrise
      • 400X Nothing But Net
      • 2587Z Nothing But Net
      • 365X Starstruck
      • 62A In The Zone
      • 202Z In The Zone
      • 5225A In The Zone
      • 169A Turning Point
      • 929U Turning Point
      • 7K Tower Takeover
      • 5225A Tower Takeover
      • 62A Change Up
    • Scuff Controller
  • 💻Software
    • Odometry
    • Path Planning
    • Robotics Basics
      • Arcade Drive
      • Tank Drive
      • Joystick Deadzones
      • Curvature (Cheesy) Drive
      • Subsystem Toggling
    • Organizing Code
      • Code Style
      • Code Styling Guide
      • Writing Good Comments
      • Version Control
    • Control Algorithms
      • Bang Bang
      • PID Controller
      • Basic Pure Pursuit
      • Flywheel Velocity Control
      • Kalman Filter
      • Take Back Half (TBH) Controller
      • RAMSETE Controller
    • Competition Specific
      • Operator Control
      • Autonomous Control
    • C++ Basics for VEX Robotics
      • Basic Control Flow
      • Enumerations
      • Namespaces (::)
      • Multiple Files (C/C++)
    • VEX Programming Software
      • PROS
        • OkapiLib
      • vexide
      • Robot Mesh Studio (RMS)
      • EasyC
      • RobotC
      • VEXcode
      • Midnight C
    • General
      • Stall Detection
      • Register Programming
      • Sensors and Odometry in Autonomous
      • Embedded Programming Tips
      • Debugging
      • Bit Shift
      • Bit Mask
      • Autoformatting
      • Finite State Machine
      • Data Logging
    • Object Recognition
      • Red Green Buoy
      • AMS
      • OpenCV
      • OpenNI
    • 🤖AI in VRC: Pac-Man Pete
  • ⚡VEX Electronics
    • V5 ESD Protection Board
    • VEX Electronics
      • VEX V5 Brain
        • V5 Electronics Observations and Issues
      • VEX Controller
      • VEXnet and V5 Robot Radio
      • VEX Battery
      • VEX Motors
    • VEX Sensors
      • 3-Pin / ADI Sensors
        • Encoder
        • Potentiometer
        • Limit Switch
        • Bumper Switch
        • Accelerometer
        • Gyroscope
        • Ultrasonic
        • Line Tracker
        • LED Indicator
      • Smart Port Sensors
        • GPS Sensor
        • Rotation Sensor
        • Vision Sensor
        • Optical Sensor
        • Distance Sensor
        • Inertial Sensor (IMU)
        • 3-Wire Expander
    • V5 Brain Wiring Guide
    • Legacy
      • VEX Cortex
      • Power Expander
      • VEX Motor Controller
      • VEX Cortex Wiring Guide
  • General Electronics
    • General Topics
      • External Boards
        • ASUS Tinker Board S
        • Arduino
        • Beagleboard
        • Leaflabs Maple
        • LattePanda
        • Meadow F7 Micro
        • Netduino
        • ODROID-XU4
        • Pandaboard
        • Raspberry Pi
      • Analog-Digital Converter (ADC)
      • Bit-Bang
      • GPIO
      • I2C
      • Jitter
      • Line Noise
      • List of Tools
      • Output Drive
      • Power Consumption
      • Radius Array
      • Resettable Fuse (PTC)
      • SPI
      • Slew Rate
      • Stalling
      • USART
      • UART
      • 5 Volt Tolerant
      • DC Motor Basics
Powered by GitBook
LogoLogo

This work is licensed under a Attribution-ShareAlike 2.0 Generic License

On this page
  • Box Bracing
  • Custom Plastic Parts
  • Manufacturing Components
  • Applications
  • Connecting Gears to Wheels
  • Teams Contributed to this Article:

Was this helpful?

Edit on GitHub
Export as PDF
  1. Hardware

Misc. Building Techniques

Outside of specific mechanisms and subsystems, which have their own section, there is much general information that can be applicable in many applications when building.

PreviousDefensive MechanismsNextVexU

Last updated 2 months ago

Was this helpful?

Box Bracing

Box Bracing is a form of bracing that strengthens a subsystem comprised of c-channels, reducing slop, flexibility, and bending in the aforementioned bars. Box Bracing is composed of two c-channels, facing inwards towards each other, and attached together with a long screw running between both c-channels.

Custom Plastic Parts

According to the current VRC rulebook, teams are allowed a certain amount of non-shattering plastic for use on robots. Any plastic that does not serve a function beyond decoration does not count towards the legal plastic limit. A piece is considered non functional if the performance of a robot or subsystem is not in any way altered by the removal of the piece(s). A piece that is used to shield game elements from entering or being stuck in a portion of the robot is considered functional.

Robots may use custom-made parts cut from certain types of non-shattering plastic. It must be possible to have cut all of the plastic parts on the Robot from a single 12” x 24” sheet, up to 0.070” thick.

Plastic parts do not have to be literally cut from the same original 12” x 24” sheet. However, all individual parts must be able to “nest” or rearrange into a 12” x 24” area.

Legal plastic (functional or decoration) types include polycarbonate (Lexan), acetal monopolymer (Delrin), acetal copolymer (Acetron GP), POM (acetal), ABS, PEEK, PET, HDPE, LDPE, Nylon (all grades), Polypropylene, and FEP. Shattering plastic (like acrylic) is generally not allowed.

As rules can change from year to year, it is recommended that you check the rules for specifications on plastic amount and type.

Manufacturing Components

Templating

Templating can be done in 2 ways but is critical for ensuring that custom plastic parts will fit well into the greater robot design.

Manual templating can be done on a sheet of graph paper where key aspects of the design are sketched out (cuts, bends, holes, etc.) and the overall outline is cut from the paper and measured against an existing mechanism. The template can then be traced onto a sheet of plastic & cut.

Use a Dremel, Hack-saw, Band-saw, or Scroll-saw to cut the plastic & a drill press for any holes.

If the part, or entire robot, is being designed in a CAD program, then the face of the part can be exported, printed, and traced onto components. This is a great way to make more precise designs than may be possible with a pencil on paper, but without the need for additional tools like a laser cutter.

Nesting

Nesting is the process of arranging multiple parts efficiently on a sheet of material to minimize waste, reduce cutting time, and optimize material usage. This is especially useful for fitting parts within a 12” x 24” area. However, maintaining proper spacing between parts is important to minimize thermal distortion or cutting defects.

Laser Cutting

Bending

For polycarbonate and ABS, bend beyond desired angle as it will cool and settle into a lower angle.

The basic process steps are also shown here:

Make sure this is done with proper PPE (gloves, safety glasses, pliers, etc.) and under adult supervision. Do this in a well ventilated area & don't use a hair dryer.

Applications

  • Plastic Gussets

Using plastic to create custom gussets or brackets can be very beneficial when constructing angles not supported by VEX parts, or when designing with odd measurements. Whether by use of CAD or tin snips, using custom gussets or brackets can often lead to a more precise, stable mounting solution.

Connecting Gears to Wheels

Oftentimes, especially in drive trains, wheels are driven from gears, but the use of axles, or screw joints tends to allow for slop that is not wanted. To overcome this, it is a common practice to use additional bracing & hardware to attach the wheels & gears with improved rigidity in the joint.

Vex has released new wheels which contain standard 0.5" spaced holes allowing for far easier attachment. This article portion will focus on alternative needs

Using stand-offs, it is possible to brace the core of most wheels against various gears. As shown below, 2 stand-offs act to apply torque directly to the wheel off of the face of the gear. These two points, along with the shaft itself, will reduce the slop in rotation.

Zip ties can be used, and are most commonly used with flex wheels. Making sure to evenly distribute zip ties & to overlap where possible will create the best outcome. Zip ties are not limited to only flex wheels & were a common way to reduce slop pre-V5

Teams Contributed to this Article:

The space between the two c-channels should be filled with spacers wherever a screw runs between the c-channels in order to prevent over-tightening, which can deform the metal. Box Bracing is often used in coordination with other bracing techniques, which can be found .

RoboSource -

VEX -

Tutorial for Fusion 360 Extensions: Nesting and Fabrication -

Specialized Software - ,

Laser Cutting is a legal technique in VRC & VURC as long as the material being cut itself is legal to be used. Find more information in the

To bend plastic, use a , first, securely clamp the plastic sheet along the desired bend line, ensuring it remains stationary. Gradually heat the bending area with the heat gun, moving it back and forth evenly until the plastic becomes pliable. Once softened, gently bend the sheet to the desired angle and hold it in place until it cools and solidifies in the new shape.

(Purdue SIGBots)

(Yokai Robotics)

⚙️
here
https://www.robosource.net/plastic-sheets
https://web.archive.org/web/20240725100611/https://www.vexrobotics.com/polycarbonate.html
https://youtu.be/rVq4IdzaFlw?si=BEZIHB0E-Av_Fkcy
https://deepnest.io/
https://nestingcenter.com/
Laser Cutting Article
heat gun
BLRS
94999E
Skirts
An example of Box Bracing
5225A Change Up Intake