LogoLogo
  • Welcome!
  • Mission Statement
  • Contributing Guidelines
    • Embed CADs in Wiki Articles
  • VEX Worlds Livestream Archive
    • VEX U
    • V5RC High School
    • V5RC Middle School
    • VIQRC Middle School
    • VIQRC Elementary School
    • JROTC
  • ⚙️Hardware
    • Design Fundamentals
      • Gear Ratios
      • Internal Forces (Stress)
      • Torque
      • RPM
      • Center of Mass
    • Introduction to VEX Parts
      • Structure
        • C-Channels and Angles
        • Fasteners
        • Retainers
        • Gussets and Brackets
        • Bearings
        • Plate Metal and Flat Bars
      • Motion
        • High Strength Components
        • Gears and Sprockets
        • Traction Wheels
        • Mecanum Wheels
        • Omnidirectional Wheels
        • Flex Wheels
    • Robot Decorations
      • Part Dyeing
      • Metal Coloring
      • License Plate Holders
    • Lifts
      • Double Reverse Four Bar (DR4B or RD4B)
      • Four Bar
      • Scissor Lift
      • Six Bar
      • Other Lifts
      • Best Practices
    • Shooting Mechanisms
      • Catapult
      • Flywheel
      • Linear Puncher
    • Drivetrains
      • Tank Drive
      • Mecanum Drive
      • Holonomic Drive
      • Designing a Drivetrain
      • Best Practices
    • Pivots & Joints
    • Pneumatics
      • Best Practices - Pneumatics
    • Intakes
    • Flip Out Mechanisms
    • Defensive Mechanisms
    • Misc. Building Techniques
    • VexU
      • Common Manufacturing Techniques
        • 3D Printing
        • Laser Cutting
      • Custom Manufactured Parts Library
      • Commercial Off The Shelf Parts Library
  • 👑Team Administration
    • New Team Resources
      • Creating The Team
      • Gaining Interest for Robotics Teams
      • Attending Competitions
        • Elimination Bracket
    • Team Dynamics
      • Organization Structure and Longevity
      • Member Allocation and Management
      • How *Not* To Run a Team
    • Team Finances
      • One-Year Team Financial Breakdown
      • Funding Your Teams
    • Hosting Competitions
      • Live Streaming
      • Tournament Manager
        • Competition Electronics
        • Creating a Tournament
        • Tools
          • Field Set Control
          • Connecting Mobile Devices
          • Connecting Raspberry Pis
        • Match Control
          • Inputting Match Scores
          • Inputting Skills Scores
          • Inputting Scores on TM Mobile
        • Displays
        • Alliance Selection
      • Additional Event Partner Resources
    • VexU Organization Management
      • Getting Started in VexU
      • Team / Personnel Management
      • Volunteering At Local Events
  • 📚The Judging Process
    • The Engineering Design Process
      • Test and Refine
    • The Engineering Notebook
      • Segments of the Notebook
      • BLRS2 '23-'24 Engineering Notebook
      • Integrating Inventor Models into Documentation
      • Engineering Notebook Rubric Breakdown
    • The Interview
      • Interview Rubric Breakdown
    • Using Notion for an Engineering Notebook
      • How to Setup a Notebook
      • How to Create Entries
      • How to Export a Notebook
      • Purdue SIGBots Notion Template
        • Game Analysis
        • Identify The Problem
        • Brainstorm Solution
        • Select Best Approach & Plan
        • Build Log
        • Programming Log
        • Testing Solution
        • Tournament Recap
        • Innovative Feature
  • 🖥️VEX CAD
    • CAD Programs
      • Inventor
      • Fusion 360
      • Solidworks
      • OnShape
      • Protobot
    • Making a Chassis
      • Inventor Chassis: The Basics
        • Installation
        • User Interface Overview
        • Dark Mode
        • Assemblies
        • Placing Parts
        • Navigating CAD
        • Changing Visual Style
        • Grounding
        • Connecting Two C-Channels
        • Modifying Existing Constraints
        • Toggling Visibility on Existing Parts
        • Completing Half of the Chassis
          • Inner Drive Channel
          • Bearing Flats
          • Motors
          • Wheels
          • Sprockets
          • Spacers, Washers and Standoffs
          • Spacers Cont.
        • Creating Mid-Plane
        • Mirroring
      • Inventor Chassis: Best Practices
        • File Structure
        • Subassemblies
        • Wheel Subassembly
        • Origin Planes
        • Cross Brace
        • Drive Channels
        • Simple Motor iMates
        • Replacing Simple Electronics
        • Completing Half of the Drive
          • Bearing Flats (Best Practice)
          • Wheels
          • Powered Gear
          • Spacer Boxing
          • Spacers, Washers and Standoffs (Best Practice)
        • Model Browser Folders
        • Mirroring (Best Practice)
        • Model Browser Folder (Right)
        • Main Assembly
      • Fusion 360 Chassis
      • Solidworks Chassis, Chain, and Custom Plastic
    • Remembering The Best
      • 62A Skyrise
      • 400X Nothing But Net
      • 2587Z Nothing But Net
      • 365X Starstruck
      • 62A In The Zone
      • 202Z In The Zone
      • 5225A In The Zone
      • 169A Turning Point
      • 929U Turning Point
      • 7K Tower Takeover
      • 5225A Tower Takeover
      • 62A Change Up
    • Scuff Controller
  • 💻Software
    • Odometry
    • Path Planning
    • Robotics Basics
      • Arcade Drive
      • Tank Drive
      • Joystick Deadzones
      • Curvature (Cheesy) Drive
      • Subsystem Toggling
    • Organizing Code
      • Code Style
      • Code Styling Guide
      • Writing Good Comments
      • Version Control
    • Control Algorithms
      • Bang Bang
      • PID Controller
      • Basic Pure Pursuit
      • Flywheel Velocity Control
      • Kalman Filter
      • Take Back Half (TBH) Controller
      • RAMSETE Controller
    • Competition Specific
      • Operator Control
      • Autonomous Control
    • C++ Basics for VEX Robotics
      • Basic Control Flow
      • Enumerations
      • Namespaces (::)
      • Multiple Files (C/C++)
    • VEX Programming Software
      • PROS
        • OkapiLib
      • vexide
      • Robot Mesh Studio (RMS)
      • EasyC
      • RobotC
      • VEXcode
      • Midnight C
    • General
      • Stall Detection
      • Register Programming
      • Sensors and Odometry in Autonomous
      • Embedded Programming Tips
      • Debugging
      • Bit Shift
      • Bit Mask
      • Autoformatting
      • Finite State Machine
      • Data Logging
    • Object Recognition
      • Red Green Buoy
      • AMS
      • OpenCV
      • OpenNI
    • 🤖AI in VRC: Pac-Man Pete
  • ⚡VEX Electronics
    • V5 ESD Protection Board
    • VEX Electronics
      • VEX V5 Brain
        • V5 Electronics Observations and Issues
      • VEX Controller
      • VEXnet and V5 Robot Radio
      • VEX Battery
      • VEX Motors
    • VEX Sensors
      • 3-Pin / ADI Sensors
        • Encoder
        • Potentiometer
        • Limit Switch
        • Bumper Switch
        • Accelerometer
        • Gyroscope
        • Ultrasonic
        • Line Tracker
        • LED Indicator
      • Smart Port Sensors
        • GPS Sensor
        • Rotation Sensor
        • Vision Sensor
        • Optical Sensor
        • Distance Sensor
        • Inertial Sensor (IMU)
        • 3-Wire Expander
    • V5 Brain Wiring Guide
    • Legacy
      • VEX Cortex
      • Power Expander
      • VEX Motor Controller
      • VEX Cortex Wiring Guide
  • General Electronics
    • General Topics
      • External Boards
        • ASUS Tinker Board S
        • Arduino
        • Beagleboard
        • Leaflabs Maple
        • LattePanda
        • Meadow F7 Micro
        • Netduino
        • ODROID-XU4
        • Pandaboard
        • Raspberry Pi
      • Analog-Digital Converter (ADC)
      • Bit-Bang
      • GPIO
      • I2C
      • Jitter
      • Line Noise
      • List of Tools
      • Output Drive
      • Power Consumption
      • Radius Array
      • Resettable Fuse (PTC)
      • SPI
      • Slew Rate
      • Stalling
      • USART
      • UART
      • 5 Volt Tolerant
      • DC Motor Basics
Powered by GitBook
LogoLogo

This work is licensed under a Attribution-ShareAlike 2.0 Generic License

On this page
  • Digital multimeter
  • Soldering iron
  • Oscilloscope
  • Bus/logic analyzer
  • Teams Contributed to this Article:

Was this helpful?

Edit on GitHub
Export as PDF
  1. General Electronics
  2. General Topics

List of Tools

A list of essential tools for VEXU sensor work.

PreviousLine NoiseNextOutput Drive

Last updated 4 years ago

Was this helpful?

Digital multimeter

The digital multimeter, or DMM for short, is the typical method of measuring electrical attributes such as voltage, current, or resistance. Most low-cost DMMs have a dial which is used to select the measurement mode and the expected range of values to be read, while better meters might automatically determine the range. As DMMs are battery-powered, one must remember to turn them off after use. Purdue Engineering stocks precision benchtop DMMs in most electrical engineering labs for delicate tasks. Analog multimeters are also available, but are notoriously difficult to use.

DMMs only update at about 1 Hz and are ill-suited for measuring varying or periodic waveforms; an oscilloscope is more useful in that regard.

Soldering iron

Soldering irons should not be kept on a joint for longer than necessary, as many components can be damaged by excessive heat. As is usually expected, the tip is hot and can burn a person; do not pick up a soldering iron by the tip, even when it is off, as most soldering irons take a long time to cool after power is removed. Clean the tip using a wet sponge frequently before, during, and after use; this is the number one way to improve soldering! A clean tip is much easier to use than a dirty tip and makes higher quality joints.

Soldering irons can be used for many types of joints, but soldering a large circuit is a tiresome manual process which is prone to error. A reflow process can be used instead to solder all joints at the same time, particularly in the case of surface-mount components. Use of proper soldering technique is essential, along with external flux and the proper type of solder. Lead-free solder is notably more difficult to use properly than older leaded solder.

Oscilloscope

An oscilloscope is an electronic device intended to measure high-frequency periodic changes in electrical circuits or to observe one-time occurrences. The input voltage is sampled rapidly, millions of times per second versus a few times per second by a digital multimeter, and the variation over time displayed on the oscilloscope screen. The iconic graph is updated whenever a user-defined "trigger" event occurs to avoid a scrolling waveform caused by an inability to lock onto a consistent point in the signal; alternatively, a single capture can be set to observe a transient phenomenon. Some oscilloscopes use a computer screen for output and allow the loading and saving of captured waveforms, known as "traces".

Oscilloscopes are invaluable for examining electronics circuits, but can only generally measure voltage. Usually, this is sufficient, as innovative measuring techniques can allow the indirect measurement of resistance, capacitance, or current by measuring some other part of the circuit under test. Do note that the negative lead of the oscilloscope is usually grounded; this will cause issues if measuring a circuit which is directly or indirectly connected at some point to the ground, either by using a "wall-wart" style outlet power supply or by being connected to a computer system (which are always grounded).

Bus/logic analyzer

Advanced protocols can be difficult to debug, and oscilloscopes usually cannot monitor more than two or three channels at a time. A logic analyzer or bus analyzer can sample many digital signals at a very high speed (often exceeding 100 MHz bandwidth) to find and fix digital signal problems. Such devices are usually buffered and PC-based to allow custom triggering or decoding of protocol information into a user-readable format.

Teams Contributed to this Article:

For permanent connection of electrical parts, soldering is the most common method. A soldering iron is the simplest way to heat up a joint to the melting point of the solder in use, which is usually much less than that of any other metal type in the circuit (but sometimes hot enough to damage nonmetallic insulation). Basic soldering irons have a low-wattage heating element and rely on thermal equilibrium between radiative losses to the environment and heat generation to achieve an unstable temperature reference, whereas better models measure the current temperature and use a to improve accuracy.

Older, analog oscilloscopes used a cathode ray tube to deflect an electron beam directly with the input voltage; this led to a large, heavy device that was not very portable. The latest digital oscilloscopes sample the input with an and display the result on an LCD screen, making them cheaper and easier to use. A detailed explanation of oscilloscope terminology and use can be found on Wikipedia.

The high speed and channel count comes at the cost of not recording the actual voltage (only the high or low state) problems with and must be found with a traditional oscilloscope.

(Purdue SIGBots)

PID Controller
Analog-Digital Converter
Slew Rate
Line Noise
BLRS