LogoLogo
  • Welcome!
  • Mission Statement
  • Contributing Guidelines
    • Embed CADs in Wiki Articles
  • VEX Worlds Livestream Archive
    • VEX U
    • V5RC High School
    • V5RC Middle School
    • VIQRC Middle School
    • VIQRC Elementary School
    • JROTC
  • ⚙️Hardware
    • Design Fundamentals
      • Gear Ratios
      • Internal Forces (Stress)
      • Torque
      • RPM
      • Center of Mass
    • Introduction to VEX Parts
      • Structure
        • C-Channels and Angles
        • Fasteners
        • Retainers
        • Gussets and Brackets
        • Bearings
        • Plate Metal and Flat Bars
      • Motion
        • High Strength Components
        • Gears and Sprockets
        • Traction Wheels
        • Mecanum Wheels
        • Omnidirectional Wheels
        • Flex Wheels
    • Robot Decorations
      • Part Dyeing
      • Metal Coloring
      • License Plate Holders
    • Lifts
      • Double Reverse Four Bar (DR4B or RD4B)
      • Four Bar
      • Scissor Lift
      • Six Bar
      • Other Lifts
      • Best Practices
    • Shooting Mechanisms
      • Catapult
      • Flywheel
      • Linear Puncher
    • Drivetrains
      • Tank Drive
      • Mecanum Drive
      • Holonomic Drive
      • Designing a Drivetrain
      • Best Practices
    • Pivots & Joints
    • Pneumatics
      • Best Practices - Pneumatics
    • Intakes
    • Flip Out Mechanisms
    • Defensive Mechanisms
    • Misc. Building Techniques
    • VexU
      • Common Manufacturing Techniques
        • 3D Printing
        • Laser Cutting
      • Custom Manufactured Parts Library
      • Commercial Off The Shelf Parts Library
  • 👑Team Administration
    • New Team Resources
      • Creating The Team
      • Gaining Interest for Robotics Teams
      • Attending Competitions
        • Elimination Bracket
    • Team Dynamics
      • Organization Structure and Longevity
      • Member Allocation and Management
      • How *Not* To Run a Team
    • Team Finances
      • One-Year Team Financial Breakdown
      • Funding Your Teams
    • Hosting Competitions
      • Live Streaming
      • Tournament Manager
        • Competition Electronics
        • Creating a Tournament
        • Tools
          • Field Set Control
          • Connecting Mobile Devices
          • Connecting Raspberry Pis
        • Match Control
          • Inputting Match Scores
          • Inputting Skills Scores
          • Inputting Scores on TM Mobile
        • Displays
        • Alliance Selection
      • Additional Event Partner Resources
    • VexU Organization Management
      • Getting Started in VexU
      • Team / Personnel Management
      • Volunteering At Local Events
  • 📚The Judging Process
    • The Engineering Design Process
      • Test and Refine
    • The Engineering Notebook
      • Segments of the Notebook
      • BLRS2 '23-'24 Engineering Notebook
      • Integrating Inventor Models into Documentation
      • Engineering Notebook Rubric Breakdown
    • The Interview
      • Interview Rubric Breakdown
    • Using Notion for an Engineering Notebook
      • How to Setup a Notebook
      • How to Create Entries
      • How to Export a Notebook
      • Purdue SIGBots Notion Template
        • Game Analysis
        • Identify The Problem
        • Brainstorm Solution
        • Select Best Approach & Plan
        • Build Log
        • Programming Log
        • Testing Solution
        • Tournament Recap
        • Innovative Feature
  • 🖥️VEX CAD
    • CAD Programs
      • Inventor
      • Fusion 360
      • Solidworks
      • OnShape
      • Protobot
    • Making a Chassis
      • Inventor Chassis: The Basics
        • Installation
        • User Interface Overview
        • Dark Mode
        • Assemblies
        • Placing Parts
        • Navigating CAD
        • Changing Visual Style
        • Grounding
        • Connecting Two C-Channels
        • Modifying Existing Constraints
        • Toggling Visibility on Existing Parts
        • Completing Half of the Chassis
          • Inner Drive Channel
          • Bearing Flats
          • Motors
          • Wheels
          • Sprockets
          • Spacers, Washers and Standoffs
          • Spacers Cont.
        • Creating Mid-Plane
        • Mirroring
      • Inventor Chassis: Best Practices
        • File Structure
        • Subassemblies
        • Wheel Subassembly
        • Origin Planes
        • Cross Brace
        • Drive Channels
        • Simple Motor iMates
        • Replacing Simple Electronics
        • Completing Half of the Drive
          • Bearing Flats (Best Practice)
          • Wheels
          • Powered Gear
          • Spacer Boxing
          • Spacers, Washers and Standoffs (Best Practice)
        • Model Browser Folders
        • Mirroring (Best Practice)
        • Model Browser Folder (Right)
        • Main Assembly
      • Fusion 360 Chassis
      • Solidworks Chassis, Chain, and Custom Plastic
    • Remembering The Best
      • 62A Skyrise
      • 400X Nothing But Net
      • 2587Z Nothing But Net
      • 365X Starstruck
      • 62A In The Zone
      • 202Z In The Zone
      • 5225A In The Zone
      • 169A Turning Point
      • 929U Turning Point
      • 7K Tower Takeover
      • 5225A Tower Takeover
      • 62A Change Up
    • Scuff Controller
  • 💻Software
    • Odometry
    • Path Planning
    • Robotics Basics
      • Arcade Drive
      • Tank Drive
      • Joystick Deadzones
      • Curvature (Cheesy) Drive
      • Subsystem Toggling
    • Organizing Code
      • Code Style
      • Code Styling Guide
      • Writing Good Comments
      • Version Control
    • Control Algorithms
      • Bang Bang
      • PID Controller
      • Basic Pure Pursuit
      • Flywheel Velocity Control
      • Kalman Filter
      • Take Back Half (TBH) Controller
      • RAMSETE Controller
    • Competition Specific
      • Operator Control
      • Autonomous Control
    • C++ Basics for VEX Robotics
      • Basic Control Flow
      • Enumerations
      • Namespaces (::)
      • Multiple Files (C/C++)
    • VEX Programming Software
      • PROS
        • OkapiLib
      • vexide
      • Robot Mesh Studio (RMS)
      • EasyC
      • RobotC
      • VEXcode
      • Midnight C
    • General
      • Stall Detection
      • Register Programming
      • Sensors and Odometry in Autonomous
      • Embedded Programming Tips
      • Debugging
      • Bit Shift
      • Bit Mask
      • Autoformatting
      • Finite State Machine
      • Data Logging
    • Object Recognition
      • Red Green Buoy
      • AMS
      • OpenCV
      • OpenNI
    • 🤖AI in VRC: Pac-Man Pete
  • ⚡VEX Electronics
    • V5 ESD Protection Board
    • VEX Electronics
      • VEX V5 Brain
        • V5 Electronics Observations and Issues
      • VEX Controller
      • VEXnet and V5 Robot Radio
      • VEX Battery
      • VEX Motors
    • VEX Sensors
      • 3-Pin / ADI Sensors
        • Encoder
        • Potentiometer
        • Limit Switch
        • Bumper Switch
        • Accelerometer
        • Gyroscope
        • Ultrasonic
        • Line Tracker
        • LED Indicator
      • Smart Port Sensors
        • GPS Sensor
        • Rotation Sensor
        • Vision Sensor
        • Optical Sensor
        • Distance Sensor
        • Inertial Sensor (IMU)
        • 3-Wire Expander
    • V5 Brain Wiring Guide
    • Legacy
      • VEX Cortex
      • Power Expander
      • VEX Motor Controller
      • VEX Cortex Wiring Guide
  • General Electronics
    • General Topics
      • External Boards
        • ASUS Tinker Board S
        • Arduino
        • Beagleboard
        • Leaflabs Maple
        • LattePanda
        • Meadow F7 Micro
        • Netduino
        • ODROID-XU4
        • Pandaboard
        • Raspberry Pi
      • Analog-Digital Converter (ADC)
      • Bit-Bang
      • GPIO
      • I2C
      • Jitter
      • Line Noise
      • List of Tools
      • Output Drive
      • Power Consumption
      • Radius Array
      • Resettable Fuse (PTC)
      • SPI
      • Slew Rate
      • Stalling
      • USART
      • UART
      • 5 Volt Tolerant
      • DC Motor Basics
Powered by GitBook
LogoLogo

This work is licensed under a Attribution-ShareAlike 2.0 Generic License

On this page
  • Introduction
  • Ordering
  • JLC Order Process
  • 3D Printable Case
  • Installation
  • Teams Contributed to this Article:

Was this helpful?

Edit on GitHub
Export as PDF
  1. VEX Electronics

V5 ESD Protection Board

An ESD Protection board for the V5 Brain

PreviousAI in VRC: Pac-Man PeteNextVEX Electronics

Last updated 2 years ago

Was this helpful?

Introduction

Electrostatic Discharge (ESD) is a widely accepted problem amongst the VEX community, as it results in permanent damage and disabling of ports on the . ESD protection boards, while not competition legal as of the publishing of this article, help solve this issue.

Each V5 Smart cable contains four wires that connect devices, such as and , to the . Two of these wires provide power to the device and can withstand high voltages. However, the other two wires transfer data and are not able to withstand high voltages. Static buildup can rapidly release thousands of volts of electricity. If this static goes across one of the data lines, it may cause permanent damage to the port and make it unusable.

The ESD protection board contains TVS diodes on the two data lines between the connected device and . A good way to visualize how the TVS diode works is by thinking of it as a pipe system with a valve. Normally, the valve to the ground line is closed. However, when a large voltage comes along the data line, the electrostatic pressure from it forces the valve open, allowing the voltage to be grounded instead of flow along the data line.

The table below shows the maximum operating conditions of the TVS diodes used in the boards.

Technical information about RS-485 Bus Protection can be seen here:

Ordering

We suggest using the PCB manufacturer JLC to order these boards, as they are cheap, reliable, and offer SMT assembly services. Our instructions on how to order will be based on ordering through JLC, but you are more than welcome to order from another manufacturer.

Our board design has been panelized, meaning it is multiple ESD protection boards printed together onto one sheet. This panelized PCB can be broken apart to separate each board. A picture of the panelized board is shown below.

We recommend using JLC's SMT assembly service to get the TVS diodes printed onto the boards during production, and include this process in our walkthrough. Their services allow us to get the TVS diodes at a cheaper price/diode and cut down on shipping costs and effort.

Please remember when ordering RJ9 Jacks that each ESD protection board requires two jacks to function. This means you should order twice as many jacks as boards you want.

The table below displays all parts you need to order for a complete ESD protection board, as well as links to buy the parts. We have created a walkthrough on ordering from JLC below the table.

The following prices are based on the minimum quantity and unit cost at that quantity, and do not include available coupons or sales. Increasing the quantity will decrease the unit cost, so it is recommended to do one big order instead of multiple small orders.

Vendor
Description
Min. Qty.
MPN
Vendor Part #
Unit Cost
Ext.

RJ9 Jack - 4P4C Unshielded

100

A-2004-3-4-LP-N-R

AE10381-ND

$0.4385

$43.85

ESD Board PCB & TVS Diode

5

N/A

N/A

$0.3476

$17.38

Total

null

$61.23

Cost per ESD Board

null

$1.2246

JLC Order Process

Firstly, download all three files attached below.

Please keep in mind that each panelized board contains ten ESD protection boards, so the number of individual boards you receive is ten times the quantity you input.

JLC offers many coupons for SMT assembly and shipping that will automatically appear during checkout. Be sure to apply these coupons before you submit your order.

3D Printable Case

Jess from VEXU team EZ has designed 3D printed cases to house the ESD protection boards. There are designs for one board, four boards, and eight boards. Attached below are the STL and STEP files for the different case sizes.

To print the cases, place the STL files in your slicer with the flat side on the bed. The recommended print settings are 15% infill with 0.2mm resolution. Supports are not needed and brims are optional.

Installation

The first step is to place the R9 Jacks onto the marked locations on the ESD protection board. They should fit into the holes smoothly and without much force.

The second step is to solder the 4 connections on each R9 Jack onto the ESD protection board. Your board should appear similar to the picture below when you are done. Please confirm that the solder job was done correctly before proceeding to the next step.

The third step is to place the ESD protection boards into their case. Ensure that the screw holes in the center of the case and board are aligned.

The fourth and final step is to align the screw holes on the case with the holes on a VEX structure. Then, put a screw all the way through the structure, case, and board and tighten it into place.

Teams Contributed to this Article:

  • EZ

Original board design credit goes to Ritwik Pandey, a BLRS alumni. Further revisions are credited to Will Xu and Ben Davis.

As shown in the table above, the TVS diodes used can redirect up to 30kV (thirty thousand volts) of ESD, meaning it can ground a significant amount of electricity and prevent it from reaching the data line. Adding these ESD protection boards to your robot is a simple and cost-effective way to protect and extend the lifespan of your.

Then, visit and follow the instructions in the video linked below.

To use your newly assembled ESD protection board, connect your to the board on one jack, and connect a port on the to the other jack.

(Purdue SIGBots)

⚡
V5 Brain
JLC's website
VEX Motors
V5 Brain
BLRS
Digi-Key
JLC
V5 Brain
motors
sensors
V5 Brain
V5 Brain
Video walkthrough of ordering ESD protection boards with SMT assmebly through JLCPCB.
2MB
TI-IEC ESD RS-485 Bus Protection.pdf
pdf
110KB
Panelized Board GERBER.zip
archive
File containing ESD Board PCB data.
478B
Panelized Board BOM.csv
File containing TVS Diode part data.
2KB
Panelized Board CPL.csv
File containing TVS Diode placement data.
553KB
1 ESD Board Case.zip
archive
File containing .stl and .step files for 3D printable case for one board.
595KB
4 ESD Board Case.zip
archive
File containing .stl and .step files for 3D printable case for four boards.
642KB
8 ESD Board Case.zip
archive
File containing .stl and .step files for 3D printable case for eight boards.
TVS Diode Specifications
Diagram of ESD protection board.
Model of a panelized sheet of ESD protection boards.
Assembled ESD Boards inside 3D printable case.
Print orientation for the available ESD Board cases in PrusaSlicer.
Picture of ESD protection board with R9 Jack locations circle in red.
ESD Protection Board with R9 jacks soldered on.
Picture of completed second step of installation process